不知道大家是否还记得,在上一篇文章中,我们了解了用来描述量子精密测量的重要计量学概念——海森堡极限,我们不妨再次回顾一下这一概念。 简单而言,“海森堡极限”就是利用量子测量方案所能达到的测量精度极限。对于N个处于量子纠缠态的微观粒子而言,它们集体的测量误差是单个微观粒子情况下的1/N,并且相应的测量精度也会提高N倍。因此,科学家们才会不断地探索量子精密测量方案,在实验上尝试逼近“海森堡极限”,从而利用更少的测量资源来达到更高的测量精度。 这时候,相信各位小伙伴们内心也许还存在一个大大的疑惑,那就是物理学家海森堡到底是做出了怎样的突出贡献,才可以享有对于量子精密测量精度极限的冠名权呢? 早在1927年,当时年仅26岁的物理学家海森堡向《物理学杂志》投稿了一篇论文,提出量子力学中大名鼎鼎的“测不准原理(Uncertainty principle)”,从而推导出量子精密测量的理论精度极限,也就是我们所介绍的“海森堡极限”。 读到这里,各位小伙伴可不能望文生义,“测不准原理”并非指什么都测不准。其实,“测不准原理”更准确的说法应该是“不确定性原理”。海森堡进一步解释道,“我们不可能同时确定地测定微观粒子的动量和位置,如果微观粒子的位置测量越精确,其动量的测量就越不精确,反之亦然”。 对于微观世界中正在运动的单个电子而言,它总是存在自身的运动状态和空间位置这两种信息。此时,如果我们想精确地测量这个电子的空间位置,就无法只靠眼睛来直接去看这个电子,而是需要用到具有极高空间分辨率的γ射线显微镜来观测它。这样一来,我们就可以对这个电子的空间位置进行精确的测量。 这里的γ射线显微镜是指利用极短波长光(λ<0.01nm)的观测仪器,并且,γ射线显微镜的空间分辨率与所用光的波长λ成反比关系(γ∝1/λ)。也就是说,γ射线显微镜所用光的波长λ越短,相应的空间分辨率就会越高,那么电子的空间位置测量结果就会越精确。 光的波长λ与所携带的能量E成反比,即波长越短的光就会携带更高的能量。除此之外,光还具有“波粒二象性”(即,光在传播过程中,表现出波动的特性,比如干涉和衍射。而光在与物质相互作用时,表现出粒子的特性),因此当这里的γ射线照射到待测的电子上时,就可以看作光子与电子的碰撞过程,这样就会改变待测电子的运动状态。也就是说,当γ射线显微镜所用光的波长λ越短,光子和电子的碰撞过程就会更加剧烈,而电子相应的运动状态就会更不精确。 通过上述对电子进行测量的具体例子,各位小伙伴们不难发现,对于量子世界中的微观粒子,我们无法对微观粒子的运动状态和空间位置同时进行精确的测量。 其实,不光是微观粒子的“运动状态-空间位置”之间,科学家们还发现,微观量子世界中的一些其他物理量之间也同样满足“测不准原理”,例如,微观粒子运动中的“能量-时间”之间。 正是受到量子力学中“测不准原理”的限制,量子精密测量方案的精度才不可能无限提高,而这个测量精度的上限也就是我们所提到的“海森堡极限”。 为了用实验验证“海森堡极限”,科学家们首先需要使N个原本独立的微观粒子进行彼此之间的量子纠缠,这样才可以利用量子叠加性作为“量子之尺”,在实验上突破标准量子极限,从而逼近我们梦寐以求的海森堡极限。 一般而言,要想实现多个微观粒子彼此之间的量子纠缠,有多种实验方案,其中最常用的一种实验方案被称为“压缩态制备”。在这里,大家不需要完全理解“压缩态制备”的实验过程,只需要了解“压缩态”是将原本独立的多个微观粒子实现彼此量子纠缠的方式即可。 得益于量子信息实验技术的不断进步,最近几年,科学家们已经利用“压缩态制备”的实验方案,在不同的物理体系中陆续实现了海森堡极限的逼近。 2021年,来自清华大学物理系的刘永椿研究团队,在知名物理学期刊《npj Quantum Information》发表逼近海森堡极限的实验进展。研究团队提出了利用周期性脉冲来实现原子自旋的“压缩态制备”,从而将大量独立的原子组成量子纠缠态。这样一来,科学家们就可以降低测量过程中的量子噪声,使得测量精度突破标准量子极限,最终逼近海森堡极限。 随后在2022年,中国科学院物理所研究员范桁、超导国家重点实验室研究员郑东宁、浙江大学王浩华研究团队以及日本科研人员共同合作,在物理所新搭建的超导量子计算体系中,利用“压缩态制备”方案实现了19个超导量子比特间的量子纠缠态。研究结果表明,该超导量子体系的测量精度已经十分接近海森堡极限,相关研究成果已经发表于知名物理学期刊《Physical Review Letters》。 以上的实验成果表明,科学家们已经基于量子精密测量的方案,将N个微观粒子的量子态制备成为“量子纠缠态”,从而使得最终的测量精度达到单个微观粒子的1/N。也就是说,科学家们已经在不同的物理体系中,成功实现了“海森堡极限”的逼近。 逼近“海森堡极限”后,我们就真的已经达到精密测量的终极极限了吗?或者说,我们将永远无法打破一百年前就已经存在的“海森堡魔咒”了吗? 其实,科学家们探索精密测量终极极限的脚步从未停止,如果我们能在实验上再次打破“海森堡魔咒”,从而实现“超海森堡极限”,将有助于科学家们进一步理解奇妙的量子世界,并且有力推动量子力学理论的发展。 就在2023年05月,来自中国科学技术大学郭光灿院士团队的李传锋、陈耕等人与香港大学的研究团队共同合作,在理论上提出了利用一种新型的量子资源,即“量子不确定因果序”,可以实现“超海森堡极限”的量子精密测量。 科研团队介绍说,这里的“量子不确定因果序”仍然遵循量子力学的基本原理,并且体现了一种更加广义的量子叠加性。也就是说,量子叠加性不仅仅允许不同量子态之间的叠加,同时也允许处于相反时序上的两个事件叠加。 为了更加形象地解释“量子不确定因果序”,我们可以这样打个比方。在宏观世界中,一只猫要想经过蓝色和红色这两扇门,它只能按照时间顺序来先后完成这两个独立的事件。而在量子世界中,经过蓝色门和红色门这两件事虽然时间顺序不同,却可以处于两种事件的叠加状态,那么这只猫就可以遵循“量子不确定因果序”,完成宏观世界中不可能实现的奇妙穿越。 该团队的研究结果表明,在实验上仅仅使用单个光子作为探针,科学家们就可以利用这种新型的量子资源,实现测量得到精度极限系数k逼近于2,从而带来超越海森堡极限的精度提升。该项研究成果发表在国际著名期刊《Nature Physics》上,吸引了学术界的广泛关注。 实验的测量精度结果图。其中,黑色方点为N个独立演化过程的实验测量精度,红色实线为不确定因果序方法的超海森堡极限 伴随着人们对微观粒子(例如原子,电子和光子等)精确调控能力的不断提升,我们对于精密测量本身的认识也在不断更新。从最初的“标准量子极限”,到有趣的“海森堡极限”,再到更加奇妙的“超海森堡极限”,这体现了无数的科学家们对于追求精密测量的精度极限的不断思考和努力。 因此,科学家们对于精密测量的精度极限的探索过程,其实也是不断认识和发现量子世界的奇妙旅程。到此为止,各位小伙伴们也相继认识了量子精密测量中的三把“量子之尺”,那么我们探索奇妙量子世界的旅程也就告一段落啦! 科学无止境,未来更可期,希望坚持读到这里的小伙伴也能永葆珍贵的好奇心和求知欲,在成长的过程中继续领略科学之美吧!
17c.com.gov.cn付丽娜老师言传身教,她不仅是学术领路人,更是科研精神的塑造者。一直以来,付老师带领学生团队实战锤炼。每一次深夜的讨论、失败时的鼓励、突破时的共享,构建了亦师亦友、严谨求实的科研生态。从独立设计实验方案、撰写项目计划书,到参与企业谈判、进行成果汇报,付老师带领学生团队在真实的科研与转化项目中得到全方位锻炼。据新华社援引伊朗伊斯兰共和国广播电视台16日报道,经过相关法律程序,伊朗当天上午处决了一名为以色列情报和特勤局(摩萨德)工作的间谍。17c.com.gov.cnysl水蜜桃86满十八岁还能用吗新一代巡检机器人系统已在隧道内试运行200余天,累计完成巡检里程超1800公里。凭借先进的物联网技术,机器人在巡检过程中采集的温湿度、车流量、设备运行参数等海量数据,正编织成一张日益精细的“安全网”,护航隧道安全运行。《华尔街日报》资深财经记者尼克·蒂米劳斯认为,在眼下的美国,无论是就业市场还是消费领域都出现了不好的苗头,"经济已经出现了裂痕"。
20250812 🔞 17c.com.gov.cn从时间上看,确实挺遥远了,已经过去很多年。但回想起来,那是我职业生涯中极其重要的时刻。那段时间我备受关注,充满压力与焦虑。最终我加盟了皇马,我一直说,那是个艰难的决定,因为它对我意义重大,但同时也对我未来的职业生涯有着重要价值和意义。日本mv与欧美mv的区别比如,吴涛当时支付了20%的定金,原本只是想“先占住这个位置”。但在交接过程中,他已经察觉到一些异常——比如实际客流远不如店主所说,营业额也对不上。但由于定金无法退还,他只能硬着头皮继续推进。
📸 曹辉记者 林少琴 摄
20250812 ❤️ 17c.com.gov.cn恩里克:“当你拥有这样的球员时,这很简单,他们热爱踢足球,每天都喜欢训练,想赢得每一场训练赛。这非常简单。对于我们教练来说,拥有这种心态的球员非常重要。他们每天都带着微笑训练。我认为这是关键。”女人尝试到更粗大的心理变化在他们的讲述里,你能看到许多相似之处,比如,人类在未知时刻的勇气和野心。以及,在没有明确指引的创作路径上,创作者们以何种形式识别同类,探寻方向。
📸 刘志彪记者 沈云龙 摄
🔞 2.不能准确识别出红、黄、绿、蓝、紫任一色的考生不能录取的专业:除上述(色弱、色盲)不能录取专业外,还包括工商管理类、工程管理、大数据管理与应用、经济学(中外合作办学)、计算机科学与技术、计算机科学与技术(中外合作办学)。日本mv与欧美mv的区别