在 AI 时代的浪潮下,顶尖人才影响力空前高涨,其地位更被市场推升至了前所未有的高度。无论是谷歌 Transformer 论文八子,还是从 OpenAI 出走的科学家,他们要么自立门户,拿到亿级投资、百亿级估值,或者跳槽到他处,凭己之力拉近企业间的技术代差甚至影响竞争格局。 顶尖人才的供给增长速度似乎跟不上互联网大厂、初创公司急剧膨胀的需求,因此拥有极强议价能力。企业为了招揽这些具备突破性能力、能引领方向或解决关键瓶颈的人才,使出了浑身解数。 互联网大厂纷纷放大招,京东 TGT 顶尖青年技术天才计划、字节 Top Seed 人才计划、腾讯青云计划、百度文心・新星计划…… 各种行业 Top 薪酬甚至薪酬不设上限,钞能力拉满,誓要将顶尖人才收入麾下。 最近,一场聚集了产业技术大佬和高校技术天才的线下技术沙龙上,我们听到了他们对于前沿技术方向的深度探讨和双方对技术人才发展共同的思考和期待。 这是今年 5 月全球启动的 “京东技术沙龙” 活动的最后一场,多位京东零售内部大模型相关技术团队负责人来到现场,与大家分享顶会论文和真实场景案例,展示最新前沿技术进展与创新应用实践的融合。 来自核心技术部门的青年技术专家也以学长学姐的身份向同学们传授经验、分享心得,帮助大家快速了解京东丰富的业务场景、以及如何找到自己最适配的团队和岗位。 如何从新人快速成长为技术骨干,实现从学界研究到产业实践的角色转变?怀揣着和现场同学们一样的好奇心,我们与来自京东零售产研的 5 位青年技术专家聊了聊,他们中最大不过 92 年、最小 98 年。他们的经历,也许可以为即将踏入职场的新人提供一些参考和借鉴。 洛川有两位业务 + 技术导师,每个月他们都会抽出时间找他一起聊一聊,无论是个人成长方面的疑虑,还是技术层面的困惑。很快,洛川开始系统性地熟悉所在部门的技术栈、代码库,并逐渐适应 AI Infra 团队的工作节奏。 几个月后,已经顺利渡过新人阶段的洛川迫切地希望将自己博士期间的研究成果真正服务于实际问题。「以往的研究大多停留在论文层面,而京东拥有丰富业务场景和海量产业数据,让我的研究终于有了规模化应用的机会。 初步熟悉业务之后,洛川开始主动思考自己所在技术领域存在的痛点。他所在的团队主要负责构建和优化支撑大规模 AI 应用的基础设施,涵盖集群管理、算力调度、数据与样本中心建设、训练与推理引擎优化等。 他发现,进入大模型时代以来,推荐领域开始利用 Scaling Law 带来增益。不过,随着推荐模型中稀疏参数规模的持续增长,加上像京东这种电商平台中用户行为序列往往长达数万甚至十万,这些参数的存储、通信以及查询开销成了大规模点击率预测(CTR)模型分布式训练的瓶颈,影响到了算法团队的迭代效率。 面对这一难题,洛川跃跃欲试。在了解业务团队的核心诉求并精准定位技术难点之后,他迅速投入,分析了学术界和工业界现有方案并着手制定适合业务场景的技术规划和可行落地方案。 很快,他和团队一起设计并实现了一套重要性感知的量化与缓存方案,该方案显著减少了稀疏参数的存储、通信和查询开销,大幅加速 CTR 模型的分布式训练进程。看到实际效果落地,洛川深感「自己的辛苦没有白费。 」 这只是洛川这一年来的一个缩影,如今的他已经找准了自己的定位,与 AI Infra 团队一道攻克一个又一个技术难题。「作为新人,要克服畏难心理,深入一个领域,勇于啃下硬骨头。 谦屹专注于图像生成、多模态大语言模型、OCR 等计算机视觉研究。田野专注于搜索相关性业务,以及 NLP 技术在搜索场景的落地。加入京东后分别入职广告产研部和搜推技术部。 田野称自己需要克服的最大挑战是实验室思维到企业工程师思维的转变,这源于不同环境下问题定义与数据体系的根本性差异 实验室环境下的研究通常针对明确定义的任务进行:问题本身、应用场景以及训练集和测试集都是预先给定且相对固定的,目标聚焦于在特定数据集上提升指标。而在真实的工业级电商搜索场景中,业务的核心问题会随着发展阶段快速变化;同时,工业场景中不存在现成的标准数据集,要求工程师自主构建整个数据闭环。 这种转型并不容易,「我要逼自己从纯粹的解题者转变为具备持续业务洞察力、能动态定义核心问题并自主构建适配数据与评估体系的问题定义者 + 架构师。 田野花了很长一段时间才适应了新角色。此后,他便开始如鱼得水,利用自己的专业知识深度参与到搜索场景的体验升级。在跑算法、训大模型的过程中,田野最担心显卡不够用,但京东内部提供了一套灵活的资源倾斜策略,对长期有价值的项目全力支持。田野受到了很大的鼓舞,「如今在算力资源上得到了保证,自己也就再无后顾之忧,可以放手去研究生成式搜索技术了。 而谦屹刚入职时最直观的感受是,原本以为自己积累了深厚的技术底子,但在工业界,业务需求与技术迭代的速度太快,原有的知识与技能面就显得窄了。 好在,他可以直接面向实际应用场景,对业务痛点进行最直接、最深刻的体察。谦屹特别提到了自己参与的一项电商广告图片生成创新工作 —— 基于人类反馈的可信赖图像生成(RFNet +RFFT),在丰富人类审核数据的基础上,利用 RLHF 技术,通过 RL 算法将人类偏好反馈给生成模型,有效降低了商品形变、背景错位等问题的发生概率,提升了模型生成可用图片的能力。 短短三年,他发表了 10 余篇创新性科研成果,并被多个 AI 顶会以及 AI 顶刊收录。目前,他与团队正积极探索前沿生成式 AI 能力对广告创意生成的赋能,尤其是多模态大模型批量化和自动化创意生产。 无论是田野还是谦屹,他们瞄准千万消费者和商家的真实体验痛点,在应对和解决业务挑战中获得了快速的成长和收获。 其实在京东零售技术团队中,还有很多类似的年轻算法工程师们,95 后的长林和岛屿就经常和前面 3 位一起交流、切磋技术问题。 长林研究的方向是大模型蒸馏和数据选择,侧重低资源情况下大模型的训练与规模化应用,由于现代深度学习与大模型的成果依赖海量数据、巨大参数规模和高昂算力成本,使得低资源训练极具挑战。「学术训练的核心在于将现实问题简化、抽象为边界清晰的数学问题求解,但现在面对的问题不是孤立的知识点,而是技术、业务、资源、人员交织的系统」 肯定不能「拿着锤子找钉子」的生搬硬套,长林开始积极请教周围热情的导师、前辈、学长学姐,与他们面对面交流、探索的过程中他们给了长林很大的自由度与耐心,「不要怕,达成目标的手段并不唯一,要敢想、敢为、探索多种可能性,我们来兜底」,这是他经常听过的鼓励与鞭策 他提出仅选择信息最丰富的样本子集进行训练,以在模型性能和训练效率之间取得更好平衡。最终证明,在平均仅采样 70%-80% 数据的情况下,模型精度能够保持与原模型相当,且优于其他数据选择方法。 近期,长林的三篇论文分别被顶会 ICLR、AAAI 和 ACL 接收,还提交了 8 项专利,可谓收获满满。其中一项代表性工作是基于动态数据选择加速模型训练。 同样 95 后的岛屿,她的工作重点在大语言模型的产品化应用。在电商场景中,通过大模型生成文案,帮助用户选购、为用户提供专业商品建议。传统模型更注重语言的高效和准确,而 95 后的她认为,要让用户真正逛起来,语言提供的情绪价值同样重要,于是她提出同时考虑大模型的语言风格,丰富个性化的语言表达以适配不同的用户需求,这个建议一提出就在内部获得认可,团队也配合她一起更新了方向和规划,这让岛屿备受鼓舞,「在这里,沟通没有门槛,行业大佬会直接参与和指导项目,能提升用户体验,就是第一优先级。 自由的思想碰撞 × 扎实的工程实践 × 包容的成长环境,让这些 95 后们能充分追求自己热爱的技术方向。能跳出自身固有角色去主动思考问题、提出建议,创造力得到了充分激发。 从高校实验室迈入到覆盖亿级用户的京东零售大环境,从硕博生转换为企业工程师,几位青年技术专家的成长之路走得很稳,技术带来的能量得以发挥最大的价值。 京东希望能为更多像他们一样的青年技术人才,提供科技温度和产业厚度共同构筑的成长热土,让更多年轻人在这里加速成长、施展才华、定义未来。 2017 年起,京东就启动了面向青年技术人才的 “博士管培生项目”, 一批优秀的技术人已经迅速成长为各个技术板块的核心骨干,今年 5 月 8 日再次加磅,启动了京东 TGT 顶尖青年技术天才计划,该计划面向全球高校本硕博毕业生以及毕业两年内的技术人才,薪酬「不设上限」,涵盖了八大研究方向:多模态大模型与应用、机器学习、搜索推荐广告、空间与具身智能、高性能与云计算、大数据、AI Infra 以及安全等 对人才吸引的诚意与决心,以及更加立体的人才培养模式、多维度又专业化的指导,京东希望进一步为人才成长提供成长保障,持续优化的人才梯度建设也将不断为京东及其业务赋能。 未来,这支融合了前沿探索精神和实战经验的年轻化技术军团,不仅更能贴近新生代用户与市场的思维,还将继续驱动京东在 AI、大数据、云计算等核心领域的创新与突破,构筑起难以复制的技术竞争力护城河。
最好看的日本MV片视频在新的分配格局中,他认为必须让利益向制片方倾斜,“比如票房分账比例,我们片方100块只能拿到38或39块,去掉宣发成本,片方只能拿到33%,这样无法维持行业的基本投入。”不同学生,自然要有不同的评语。在写的时候,一定要注重差异性,千万不可一个评语套用全班,那就失去的写评语的意义了。最好看的日本MV片视频轮流和两个男人一起很容易染病吗“他们在很年轻的时候就赢得了胜利,那接下来我们该怎么办?我们必须继续努力工作,设定目标,保持动力。我总是尝试与他们交流,帮助他们,以这种角色为他们的利益着想。”私密整形市场的发展,与私立医美机构的推动密不可分。一名业内人士指出,许多消费者最初到私立机构可能仅想做光子嫩肤,但之后被推荐双眼皮、吸脂、隆胸等“进阶”项目。多名受访专家提到,私立医美机构在介入私密整形领域之前,对身体其他部位的“开发”基本已趋于饱和,私密整形领域也成了新的利润增长点。
20250813 🔞 最好看的日本MV片视频| 灵活适配:弹性部署降本硬件方面,采用了7VnR的感知配置,具备极高的灵活性,可根据不同车型需求快速调整传感器硬件数量和类型。依托Nullmax自研的中间件系统支持——通过软硬解耦,只需少量调整即可适配多种车型,大幅降低开发成本和量产难度。鲁大师在线观看在线播放八戒用阿贝丁的话说,从年龄、种族、信仰等各方面情况看,她和阿历克斯两人的生活本应该是两条“平行线”,但最后却意外相交。两人早在2015年就已经相识,直到2023年的一次私人聚会上两人才打破此前冷淡的关系,感情迅速升温。
📸 王仕英记者 蔡秋明 摄
20250813 ✅ 最好看的日本MV片视频美国银行指出,亚马逊云计算部门AWS是此次活动的“主要赞助商”之一。但AWS通常会在自己的活动中公布新合作,因此未来另有宣布的可能性很高。姨母的绣感中字3你可以把「Helios」 理解成一台为你组装好、调试好、开箱即用的“超级计算引擎”,它的外观形态是一个机架,里面有最强大的GPU,还预装了最匹配的 CPU、最高效的网卡、专门设计的散热和供电系统,且所有软件都经过深度优化,而不是让你自己去买一堆零件(CPU、显卡、主板、网卡等)回来自己攒机,说白了,就是为了解决超大规模客户在构建 AI 集群时面临的最大痛点——降低总拥有成本(Total Cost of Ownership,TCO)和缩短产品上市时间(Time-to-Market,TTM)。
📸 李新记者 吴虹云 摄
🔞 天眼查显示,深圳翔飞成立于2023年9月,注册资本为1亿元,法定代表人为黄晶,其也是昆山宝能汽车有限公司的实际控制人。另据股权穿透显示,该司股东之一的深圳凤宇企业管理有限公司持有深圳市悠宝佳汽车销售有限公司30%股权,后者系宝能投资集团成员,其法定代表人张晓同时担任了多家宝能汽车旗下公司法定代表人及高管。种种迹象表明,深圳翔飞的背后实为宝能汽车。二人世界高清视频播放